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Summary

This report deals with the theory, formulation, and solution of compressible three-

dimensional boundary-layer equations with applications to general swept subsonic or

supersonic wings in laminar flow. A number of modifications and new features are

incorporated, based on an earlier general procedure described in NASA CR 4269, Jan.

1990. A more efficient algorithm has been employed, and overall improvements have

been made that result in a user-friendly computer code. An interface routine is presented

that uses the inviscid Euler solutions as input. Code modifications are implemented for

application in laminar flow control design applications. Output of solution profiles and

quantities required in boundary-layer stability analysis is included. Conversion routines

to compare results with Navier-Stokes profiles are also presented.

This report is a stand-alone document that provides all the necessary details for

numerical calculation of three-dimensional swept-wing boundary layers. Examples of

applications and validation with thin-layer Navier-Stokes solutions are presented. A

user's manual is included as an appendix.
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Nomenclature

A1, A2, A3, A4

al_ a2_ a3

a k
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bk
/,m
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d4,d 
G
G a, C24,C25,
C26, C34, C35,

G6
Csx
Di, i = 1, 5

O3,b4

dsl, ds2

El, i = 1,4
F

f
fe
G

g12

H

HL
hb h2

h_
I

i,j,k
ke

k_
L

coefficients in the transformed continuity equation (see eqs. (47)-(50))

coefficients in the (-direction differencing formula (see eqs.
(129)-(130))

diagonal elements of the linear system given by eq. (101) or (108)

coefficients in the transformed ( momentum equation (see eqs.
(55)-(60))
coefficients

coefficients

(see eq. (91))

(see eq. (94))

coefficients in the q-direction differencing formula
(see eqs. (131)-(133))

superdiagonal elements of the linear system given by eq. (101) or
(lO8)
coefficients in the transformed r/momentum equation (see eqs.
(62)-(67))

coefficients (see eq. (92))

coefficients (see eq. (95))

pressure coefficient

metric coefficients (see eqs. (6)-(12))

skin-friction coefficient in x direction normalized with free-stream values

coefficients in the transformed energy equation (see eqs. (69)-(70))
coefficients (see eq. (96))

incremental arc lengths, nondimensional, in the x and y directions (see
eqs. (4)-(5))

coefficients (see eq. (87))
u/u_

an arbitrary function

v/v_

metric coefficient (see eq. (3))

total enthalpy, nondimensional (see eq. (24))

free-stream total enthalpy, dimensional (see eq. (23))

metric coefficient (see eqs. (1)-(2))

metric term (see eq. (8))

He
indices in the (, r/, and ( directions

index k that corresponds to the boundary-layer edge

factor for stretching the grid in the _ direction (see eq. (128))
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I

M

M_

t/X,

nxlim, nylim

P

Pr

PL
Q
q

qs

qw
R*

RecF

Reoo

Re 0

[s]
Sl, $2

T

TL
U*

C.X9

U l, V I, W l

Us, l_s

Vr

W

(v

Co

x, y, z

ak ilk @, 6k

7

¢

reference length, dimensional

I/Pr

c¢
free-stream Mach number

maximum number of boundary-layer grid points in x and y directions

limits set on _, ny to restrict computation to a smaller region

static pressure, nondimensional
laminar Prandtl number

free-stream pressure, dimensional

vector (see eq. (85))
absolute velocity, nondimensional (see eq. (25))

normalized suction rate defined as qs = (pawl)/(pooU=)

wall heat flux, dimensional

gas constant

crossflow Reynolds number (see eq. (138))

free-stream Reynolds number, based on reference length L_ (see eq.

(29))
momentum-thickness Reynolds number (see eq. (139))

residual, right-hand side of equation (108)

solution vector at location (i, j)

nondimensional arc lengths in the x and y directions (see eqs. (4)-(5))

temperature, nondimensional
free-stream temperature, dimensional

free-stream velocity, dimensional
velocities in streamwise and spanwise directions, nondimensional

velocities, nondimensional, in Cartesian coordinate directions

boundary-layer velocities along and orthogonal to the edge streamline

reference velocity for v
transformed normal velocity (see eqs. (44)-(45))

scaled normal velocity (see eq. (28))
surface-normal velocity, nondimensional

boundary-layer coordinates in streamwise, spanwise, and normal

directions, nondimensional
Cartesian coordinates, nondimensional

stretched boundary-layer normal coordinate (see eq. (27))

elements of block tridiagonal system (see eqs. (122)-(t24))

angle between x- and y-coordinate lines
ratio of specific heats

step size in ( (see eq. (110))

transformed normal coordinate (see eq. (36))
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0

A

AO, A1, /_2, A3

#
/]

p

XI_ X2_ X3

¢, ¢1, ¢2, ¢3

ff)W

Cq

_at

Subscripts:

e

k=l

k = ke

m_

r

w

x, y, z

_,_,(

1,2

Superscripts:

!

t

n

T

prefix used to indicate change in a solution vector or solution vector
element at iteration level n and at location (i, j) (see eq. (105), for

example)

boundary-layer thickness, dimensional, at which v, reduces to 10

percent of its maximum value
transformed boundary-layer surface coordinates

(p lp)
sweep angle

coefficients (see eq. (97))

absolute viscosity, nondimensional

kinematic viscosity, nondimensional

density, nondimensional

x/Pe#eSlUe

coefficients (see eq. (87))
surface partial derivative functions (see eqs. (14)-(17))

coefficient in normal velocity transformation (see eq. (115))

coefficient in wall heat flux transformation (see eq. (118))

relaxation parameter
relaxation parameter for attachment-line iteration

factor used in finite differencing in ( direction

boundary-layer edge
at the wall

at boundary-layer edge
maximum
reference value

wall quantity

partial derivatives in x, y, and z directions
partial derivatives in _, 7/, and ¢ directions

free-stream quantity

x and y directions

dimensional quantity
Cartesian coordinate (as in x', y', z')

partial derivative in ( (except for x', y', z')
iteration number

transpose
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Abbreviations:

BL

BL3D

INV

L

LISW

LHS

NS

RHS

Z

Boundary layer

Boundary layer three dimensional
Inviscid

Left-pointing

Locally infinite swept wing
Left-hand side

Navier-Stokes

Right-hand side

Zig-zag



1. INTRODUCTION

A renewed interest has developed in the design of wings with extensive lengths of

laminar flow in the subsonic and supersonic regimes. Design for laminar flow by passive

or active means is a multiparameter optimization problem that involves such variables as

surface pressure gradients, leading-edge radius, sweep, suction rates, and free-stream

conditions. To aid in the design process, a reliable computational procedure is needed

to predict boundary-layer stability. An important part of this computational prediction is

the accurate generation of smooth mean-flow profiles. This report addresses the issue

of generating these profiles.

Two options are available for mean-flow prediction. The first one is the use of an

accurate thin-layer Navier-Stokes solver in which particular attention is paid to such

issues as grid resolution and numerical dissipation. However, for repeated preliminary

design calculations, the Navier-Stokes solution is expensive. The second option is

the use of an accurate boundary-layer method coupled with an inviscid Euler solution,

which is particularly attractive for experimentation with different pressure and suction

distributions.

This report deals with the theory, formulation, and solution of compressible three-

dimensional boundary-layer equations, with specific reference to general swept subsonic

or supersonic wings in laminar flow. A number of modifications and new features are

incorporated from an earlier general procedure described in NASA CR 4269, Jan. 1990

(i.e., ref. 1; see also ref. 2). However, the present report is a stand-alone document

that provides all of the necessary details for numerical calculation of three-dimensional

swept-wing boundary layers.

The modifications to the original procedure provide a more efficient algorithm. The



solution scheme has been modified to solve the continuity, energy, and momentum equa-

tions simultaneously, with iterative update of nonlinear terms. Streamwise and spanwise

differencing schemes have been modified to ensure that the boundary-layer solution

is consistent with the boundary-layer-edge boundary conditions. Overall improvements

have been made that result in a more user-friendly computer code. An interface rou-

tine has been developed to use the Euler solutions as input. Code modifications have

been implemented for application in laminar flow control design. The modified code also

provides the output of profiles and quantities that are required in boundary-layer stability

analysis. Conversion routines that enable one to compare the boundary-layer solution

profiles with Navier-Stokes solution profiles are also provided.

Two applications of the code are presented: a subsonic case and a supersonic

case. For the subsonic case, validations with the thin-layer Navier-Stokes solutions are

presented. Detailed comparisons are made of the solution profiles and other boundary-

layer properties. For the supersonic case, comparisons are given of the present code

with a conical swept wing boundary-layer code developed by Kaups and Cebeci (ref. 3).

A user's manual is included as an appendix to this report. The complete program

package is archived in the NASA Langley computer system mass storage and can be

made available per individual request.



2. FORMULATION

2.1 Three-Dimensional Boundary-Layer Coordinates

We start with the definition of the surface-oriented curvilinear nonorthogonal coordi-

nates used in the three-dimensional boundary-layer equations.

Let us assume that the surface of interest is defined in terms of Cartesian coordinates

(x'*, y'*, z'*) in dimensional units (see Figure l(a)). The free-stream quantities are

(M_, P_o, T*) with a corresponding free-stream velocity U_o.

The body coordinates are normalized with a reference length L_o; the Cartesian

components of velocity (u'*, v'*, w'*) are normalized by the reference velocity U%. The

resulting normalized coordinates are ( x', y', z_), and the normalized velocity components

are ( _', v', w'). (See Figure 1(b).) The normalization of other flow quantities is discussed

in the next section.

The boundary-layer coordinates are defined in the two surface directions x and y,

where x is the predominant streamwise direction and y is the general spanwise direction

(not necessarily along the constant percent chord direction for a wing). The coordinate z

is mutually perpendicular to both z and y. The coordinates x and y are surface conforming,

but do not need to be measured as surface arc lengths. For example, for the case

of the attachment-line flow on a swept wing, the boundary-layer coordinate y may be

defined along the attachment line on the surface, but can be expressed as distance

in the spanwise direction perpendicular to the chord. The coordinates x and y can

also be normalized to the (0, l) range in the computational domain. The three basic

metric quantities (hi, h.2, gl_) defined later in this section characterize the stretching and

shearing of the physical grid into the computational grid.

The grid line x = 0 coincides with the starting location of the boundary layer as



shown in Figure 1(c) (in this case, the attachment line of a swept wing). The choice of

z = 0 is important because the system of equations becomes singular at the boundary-

layer origination point, and a special set of equations must be solved here to initialize

the solution.

The transformation of quantities from the (x I, yl z') to the (x, #, z) system is deter-

! ! I
mined by the set of six partial derivatives (x_, y_, z=, xy, yy, z_y). Note that in boundary-

layer theory, the planes where z = constant are assumed to be parallel to the surface,

which means that the surface partial derivatives are sufficient to characterize the trans-

formation from one system to another. These partial derivatives enter into the three-

dimensional boundary-layer equations via the three metric quantities (hi, h2, g12) de-

fined as

h_ .= V/(_,)_+ (y,)_ + (z,) _ (1)

h2= + + (2)

I ! 1 I I l
g12 = hl h2 cos fl = XxXy -F YxYy + zxzy (3)

The metric coefficients h_ and h2 represent the stretching in the two surface coordinate

directions with reference to the physical grid. The nondimensional surface arc lengths

in the two directions sl and s2 are defined by the two incremental relations

dsa = hi dx (4)

ds2 = h2 dy (5)



Further, the quantity 912/hlh2 is the cosine of the angle/_ between the two coordinates

x and y. The additional coefficients, based on hi, h2 and 912, are defined as

V/ 2 ) 2C13 = hlh5 - 912 (6)

024 = 919_, f912 i }C13 [_1 hlx @ hly -- h-_ gl2x
(7)

C25 - C231.{hshly - 2912h2x}," hs = hlh2 l+ _hih2j

hi { g12 h2y } (9)C26 -- C23 912y -- h2h2._ h2

h2{ 912 hlx}C34 = C2-.-_,3 gl2x - hlhly hi
(10)

1

C35 -- C123 {]_sh2x -- 2912hly} (11)

, }, g12 _.ql_ h2y + h2x -- -- gl2y (12)
636 -- 023 1, ].12 h2

The transformation of velocities from (u', v', u,r) to (u, v, d,) is accomplished by

the inversion of the system given below. Note that 5, is the symbol used for the

nondimensional surface-normal velocity; the symbol _v is reserved for later use as



transformed normal velocity.

where

1
X x

y,

I
Z x

xy ¢ u

I

z_ ¢ _ _wJ

U t

W I

(13)

t_ 1 I i i ry_ zu (14)--__ _ Zxyy

I .,,I ! l
_2 _ Xy_'x -- ZyXx (15)

= Xxyy -- Xyy x (16)

V/ ,,/,2 (17)¢ = + + 3

The metric terms defined above allow the flow to be described in terms of surface-oriented

quantities. As a result, the flow can be treated as equivalent to that on a developed flat

surface described by two families of nonorthogonal coordinates. However, the metric

terms do not represent the effects of surface curvature on the physics of the flow. Note

that the effect of surface shape on the boundary layer is felt only through the inviscid

pressure distribution.

2.2 Three-Dimensional Boundary-Layer Equations

The three-dimensional laminar, compressible boundary-layer equations in surface-

oriented curvilinear nonorthogonal coordinates are given below (subscripts indicate par-

tial derivatives).

The continuity equation is



hi pu + k, h,2 pv + (Clap =
x Y

(18)

The momentum equation in the x direction is

)fl llx -'}- -_21ty + I_lik + C24 l/2 --[- C25 ttv -it- C26 v 2

hlh_ hlgl2 ) 1

The momentum equation in the y direction is

-
(19)

p Vx -'[- _2 Vy + tVV_ -t- C34u 2 --l- C35 uv -t- C361)2

)1{'h2912 p, h2h2 py "/M2

(20)

The energy equation is written in terms of the nondimensional total enthalpy H. When

perfect gas and constant specific heats are assumed, the dimensional total enthalpy I-I*

is defined as

H* R*_ T* + 1 q,Z (21)

where

,2 = u,,Z + v,*2 + w_*2 _ u .2 + v .2 + 2u'v'cos/3 (22)q

The nondimensional total enthalpy H = H*/H_ is based on the reference value

1
R*7 T_ + U_ (23)

H* - -_-1

which results in the definition

T + 0.5(_/-1)M 2qz

1 + 0.5(3 _ - 1) ML
(24)



with T = T*/T_o and

q2 = u 2 + v 2 + 2uvcosfl (25)

The resulting energy equation is

[. .(1) ]p(uHx + vHv + (vIIs) = _r.rH_ + 2 1______.r (q2);

In the equations above, _ and t_ are stretched quantities with a free-stream Reynolds

number scaling applied as

_" = _"_ (27)

where

,b = _ RV/-R--_ (28)

Redo * * * (29)= ULL_/._

Other variables are normalized as p* by p;_', T* by T2_; P* by P_; and t_* by u_.* The

equation of state is then written as

P = p T (30)

The pressure coefficient can be written as

2(P- 1)C,,-
-/ML

The variation of viscosity with temperature is modeled by the Sutherland law as

. /_,*T *1.5
,a -

T* + T*

'7'* = 198.6°R = 110.33 K

(31)

(32)

tt* = 2.27x 10 -s lb-sec
ft 2 oR1/2

- 1.458 x 10 -6 N - sec
m 2 K1/2



In nondimensional form, the Sutherland law is expressed as

T .s(1 + r,) t,; r,*
# = T+T, ; #" - ; T, = T---;-t_;o o_ (33)

With the assumption that pressure is constant in the normal direction and that the normal

derivatives tend to zero at the boundary-layer edge (which is denoted by the subscript

e), the right-hand sides (RHS) of equations (15) and (16) can be replaced by the edge

quantities to yield

p ux + -_2uy +

lit c

_U_ _- C24u 2 n c C25 uv 2c C26v 2) - (#u_)_

-t- -_2 tte,y -1- C24 tte -_- C25 ?/eVe _t_ C26 t,

(34)

)Yx -1- -'_2Vy nL tVt_£, @ C34 t t2 @ C35 uv -[- C36 y2 - (flv_)_

= Pe Ve,x @ -'_2Ve,y @ C34U e -[- C35 UeVe nL C36t'

(35)

The equations are hyperbolic in the stream-surface directions and parabolic in the

surface-normal direction. The boundary conditions (ue, re, He) are specified at the

boundary-layer edge. The value of _,, and one of the values, Tw, Hw, or //',o, are

specified at the surface. The solution profiles at x = 0 and y = 0 are required to initiate

the solution marching procedure.

2.3 Transformation

A transformation is required for the 5 and _ variables to handle the singularity of the

equations at x = 0. The transformation also reduces the boundary-layer growth in the

computational coordinates. Further, a transformation for _ is necessary to express the

resulting equations in a closed form.



The transformation is defined as

= pe/_e _1 p d5 (36)
0

Z:

= x; 71 = y; sl = fhldx (37)

0

0
Although _ = x, the partial derivative _ is actually _ ly,_, and the partial derivative

is ._ J,1,¢. A similar distinction exists between _ and _. The transformations of the

gradients of an arbitrary function f between the (x, y, ,_) and ((, r/, _,') systems are given

by

1 0 _
= 0 1 i.

0 0 _¢

fu (38)

1 0 C_

0 1 _'y

0 0 _.;

(39)

Because the (3 × 3) matrices are inverses of each other, the following relations are

valid:

OC 1 ¢ ue
(40)

OC 4/ u_ (41)
0"-_" = -- "_ p VPe/-te 81

a_ _ _ _/ u_ (42)
Oy. Zrl P VPe #e S l

We also define the new variables F and G and a transformed normal velocity variable

w such that

F = u/u_; G = v/v_ (43)

10



_1 O( sl 0( Sl t,, 0(
w = ,b---- + F + --C-- (44)

uc 0S /71 O-7 h2 u, 09

where v, is an arbitrary reference velocity for v. The transformed velocity w simplifies

the continuity equation by the explicit removal of the density term. The transformation

for w can also be rewritten as

_/ ,Sl (,t} U V ) (45)

2.4 Transformed Equations

The application of the transformations for _.and _bto equations (18), (34), (35), and

(26) is straightforward and is described in detail in reference 1. (Note that in the present

report the notations for coefficients have been simplified.) The results are summarized

here. The continuity equation reduces to

t_U¢ = A 1 F,_ @ A 2 F @ A 3 Gq --_ A4 G (46)

st (47)
At = -_11

sl ¢', (49)Aa -
h,2 Ue

S_l {Cla O'v-----L-r } (50)A4 = - C13 ¢ h,z_ ,y

]1



(_ = _¢/Pe //e "Sl tie (51)

Also note that at the boundary-layer edge the transformed normal velocity becomes

we,¢ = A2 + A3 Gem + A4 Gc (52)

At the boundary-layer edge, the partial derivatives of £, G, ¢ and the metric coefficients

in the x or # direction are the same as the corresponding partial derivatives in the ,_ or

direction.

To set up the fourth-order Pade differencing, we introduce three new variables L, M,

and/, defined as the partial derivatives with respect to _ of the basic variables P, G, and

fl, respectively. The ( momentum equation reduces to

(lL -wF)¢ = /31 (F2)_ -4- /32 (FG), 7 + /33 F 2 + /34 F G + /35 G 2 4- /36 0 (53)

The new variables introduced are defined as

\pope/

The coefficients B, are given as

/31 -=- -- A1 (55)

B2 = - A3 (56)

-B4
,_l Vr _q1 Vr

u_; u_,._ - A4 + C2s- (58)h2 tl c

12



/35 = C2681¢'r2

The coefficient B6 is evaluated at the boundary-layer edge from equation (53) as

(59)

v, = -{,,¥._+ B2c.., + v3+ _,c._+ B5c_} (60)

where wc,¢ is given by equation (52).

The q momentum reduces to

(lM-wG)( = CI(FG)_ + C2(G°"),7 + C3F 2 + C4FG + CsG 2 + C60 (61)

The coefficients C, are given as

C1 = - A1 (62)

C2 = - A3 (63)

C3 - C34.sl u_ (64)
'/3/.

C4 = -A2 + .sl C35 + 81 (65)
-- Vr, _
t_1 Vr

C5 A4 + C36 81 vr sl (66)= -- _ + _ Vr,T/
ue h2 'ue

The coefficient C6 is evaluated at the boundary-layer edge from equation (61) as

13



The energy equation in terms of the transformed variables becomes

(' )I -w H = D1 (FH)_ + D2 (GH), 7 + D3 F H + D4 G H + D5
¢

_ U_ (1 - PrD5 2H_o {l Pr ) (q2)(}(

The coefficients D, are given as

(68)

D1 = -A1; D2 = -A3; D3 = -A2; D.I = -A4 (69)

The term D5 can be rewritten with equation (25) as

(,){[ ]}-Pr ( g,2 "_
D5 - H_¢ fir l u_FL + v2_GM + ucv, k._j(FM + GL) ¢

(70)

2.5 Quasi-Two-Dimensional Equations for Initial Conditions

The solution of the transformed three-dimensional boundary-layer equations requires

the specification of profiles of F, G, and H at the ( -- 0 and q = 0 planes as initial

conditions. In the ideal case, a plane of symmetry flow or a conical flow will exist at

these planes. As a result, the equations simplify to quasi-two-dimensional form (i.e.,

either ,_ or q derivatives reduce to zero). This simplification permits the solution and

generation of initial solution planes independent of the full three-dimensional flow region.

In the case of flow past a wing attached to a fuselage, certain assumptions are

necessary for simplification of the initial profiles. For a swept wing with a nonsymmetrical

chordwise wing section at an angle of attack, the attachment-line boundary layer (at ,_

= O) is a true symmetry plane only if we assume that the coefficient C26 = 0. This

14



assumption is reasonable if the curvature of the attachment line is not significant. A

more drastic assumption is necessary for the q = 0 plane. We restrict the calculation

to a certain region on the wing, where the boundary-layer assumptions are valid. At

the q = 0 boundary, we assume that the q gradients of the flow variables are equal to

zero. However, we permit variation of the metric terms as well as the boundary-layer

edge quantities in both the ( and q directions. With this assumption, the equations

again reduce to quasi-two-dimensional form. This assumption is a more general version

of the conical flow assumption and is termed as the locally infinite, swept-wing (LISW)

assumption. The profiles at the ,_ = 0, 77= 0 location are generated by assuming that

the attachment line is infinite swept locally as well.

The equations that are valid for an LISW flow are obtained by setting the coefficients

A3 (hence, B2, C2, and 132)to zero. In the finite-differencing scheme, the q-direction dif-

ferencing coefficients are also set to zero. To obtain smooth solutions near this boundary,

the full three-dimensional solution is relaxed to the LISW solution by incorporating a fac-

tor _ = _(q) to be applied to these coefficients for a few planes adjacent to the r/ = 0

plane. A value of _ = 0 gives the LISW solution, whereas a value of _ = 1 gives the

full three-dimensional solution. A similar assumption of LISW flow is used at the 7-/=

T/m,x boundary as well.

The quasi-two-dimensional equations that are valid for an attachment line are more

involved because the ( momentum equation becomes singular at ( = 0 by substituting

u = 0. The gradient Ou/#( is finite, however. The effect of the strong inviscid flow

acceleration fe = o%e/0( on the attachment-line boundary layer is characterized by taking

the ,_ derivative of the ( momentum equation. The new definitions for the transformed
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normal coordinate and normal velocity are

f d_P
e/_e hi

o

(71)

(72)

With these special transformations, the transformed equations are in the same form as

before (equations (46), (53), (61), and (68)) except that the following coefficients are

changed:

A1 = 0 (73)

A2 = - 1 (74)

hi Vr

A3 -- h2 f_ (75)

h, { CvT'_ (76)A4 - C13¢ C13 h2feJ,y

¢ = Jp,.,hlL (77)

B3 = 2 (78)

B 4 = hl Vr fe41 -- A4 4- C25 hiv____L (79)
h2f_ L

2
hl Vr

B5 : C26,x f_ (80)
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c3 = o (81)

C4 = -A2 (82)

hi vT hi (83)
C5 = -A4 + C36_ + h2f_vr'_/

U_ (1-Pr) 2(lGM) ¢ (84)D5 H_ ° Pr Vr

In the finite-differencing scheme for the attachment-line solution, the (-direction

differencing coefficients are also set to zero.

As before for the case of the LISW equations, the equations that characterize the

flow at ( = 0, 7/ = 0 are obtained from the attachment-line equations with the added

condition .43 = 0.

2.6 Equations in Vector Form

To apply the fourth-order Pade differencing formula to the set of equations, the

equation set is expressed in vectorial form for convenience. The vector Q is defined

as

where

(86)

The normal derivative Q' = OQ/OC (note that the prime denotes the partial derivative with

respect to C) can be written from the boundary-layer equations. Before the expression

for Q' is presented, the following equations are given.
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The density ratio 8 can be written from equation (24) in terms of the elements of Q as

0 = ElF 2 + E2FG + E3G 2 +E4H

X2 2 X2
E1 - ue; E2 = - 2 -- ue vr cos /3

3/3 X3

X2 2. E4 X]E 3 -- Vr ; = --
X3 X3

"y-i 2
X1 = i + ---_-_I_o; X2 = X1 - i; X3 = HeXI - X2 q_

z

(87)

The viscosity ratio I can be written from equation (33) as

The normal derivatives l' and 0' can be derived in the form

(88)

0' = 2EIFL +E2(FM+GL) +2E3GM + E4I (89)

i, = 10.___'{ 1 t } (90)V'_ 2v"-0 (1 + T.IT,)

The QI' element is obtained from equation (46). The Q2' element is obtained by

substituting for 0 from equation (87) into equation (53).

Q_ = B1 (F2)_ + B2(FG). + /_3F 2 + B4FG + /_5C 2 -4- /_6H

/_3 - B3 + E1 B6; _4 = B4 + E2 B6; /_5 = B5 + E3 B6; B6 = B6 E4

(91)

The element Q3' is similarly obtained as

Q_ = C1 (FG), + C2 (a2), 7 + C'%.3F 2 + C.4FC + C.s G2 + C.6H

C'3 = C3 -t- E1C6; C'4 = C4 -4- E2C6; C5 = C5 -4- E3C6; C'6 = C6E4

(92)
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The second derivatives L' = F", M' = G', and I' = H" required subsequently in

the vector representation are obtained by differentiation. For example, differentiation of

Q2' yields

(2'2 = 1L' + LI' -wL- Fw' = RHSofequation(91) (93)

If _ is substituted from equation (46) and rearranged, then

LI 1
= 7 [ ul (F2)(

+ B2 (FG), 7 + [?3 F2 + [_4 FG + [Y5 G 2 + [_6 H

-L# + wL + A1FF( + A3FG,_];
(94)

B3 = /_a+A2; B4 = /_4+A4

The expressions for ,,t# and /' are similarly obtained as

M' = _1 [CI(FG), 7 + C2(G2),1 + Ca F2 + 04FG + CsG 2 + C6H
1

-Ml' + wM + A1GF( + AaGG,7];
(95)

C4 _ C4 qL A2; d_5 = C,5 qt_ A4

[i
1

= 17 [D1 (FH)_ + D2(GH),_ + 15aFH + 154GH + D5

_.; + w1+ A,.r, + A..c..]; (96)

/53 = Da + A2; 1)4 = D4 + A4

The expression for D5 can be obtained from equation (70) as
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D5

U .2 1 - Pr
Ao - _ _, 2. A3 = AOUeVrCOS t_tt* Pr , A1 = Aou_2; t2 = Aovr,

(97)

Note that ,_1 = A3 = 0 for the attachment-line equations. The final vector repre-

sentation is given as

<2

1L - wF

IM - wG

lpI -- wH
F

G

H

(98)

I =

/ AIF4 + A2F + A3Gq + A4G
~ '3'

BI(F2)( + B2(FG). + B3F 2 + B4FG + B5G" + t_6H

CI(FG)(+C2(G 2) +¢3F 2+04Fc+C,5c 2+06H

DI(FH)( + D2(GH)_ + D3FH + D4GH + .D5
L

31

I

(99)

AlL( + A2L + A3M, I + A4M "_

2BI(FL)( + B2(FM + GL)o + 2133FL + 1_4(F3,I + GL) + 2135G'M + BG[

C,(FM + GL)_ + 2C2(GM), 7 + 2('3PL + (-;4(PM + GL) + 2CsGM + ('GI

D,(FI + fIL)( + D2(GI + HM), 1 + D3(FI + HL) + D4(G[ + [Jill) + Dr5

L' (equation (94))

M' (equation (95))

I' (equation (96))

(loo)
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3. DISCRETIZATION

3.1 Differencing Formulas

We apply the fourth-order Pade differencing formula in the normal direction. This two-

point compact scheme is defined in terms of the variable and its two higher derivatives.

In the present case, if we assume that the indices in the two surface directions (i,j)

remain constant and that k is the normal direction index, then the discretization at the

midpoint of k and (k- 1) is written as

Qk - Qk-; A(_2 (Q_ + Q_--1) + _A_2 (Q_ - Qk-1)" + O(A_ 5) = 0 (101)

(102)

The differencing in the surface directions ( and q are second order (or first order in

some regions). For example, in the ,_ direction, if we assume that the indices (j, k) are

fixed, then

Q( = alQi + {aQ}

{_Q} = a2Qi-1 + a3Q,_2

Similarly, in the q direction, if we assume that the indices k are fixed, then

@1 = blQi,j + {bQ}

(103)

(104)

{bQ} = b2 Qi,j-1 + b3Qi,j-'2. + b4 Qi-l,j -F bsQi-l,j+1

The value of the coefficients ai and b, are dependent on the location of the point (i,j) in

the streamwise and the crossflow direction. At present, we restrict the discussion to the

discretization in the ( direction and will use the short notation given above for the (- and

q-direction differencing. (See " Discretization in the (i,j) Directions" for more details.)

We define a solution vector {5'} = {w, F, C, H, L, M, I} T. Because the equations

are nonlinear in {S}, Newton linearization is used to convert the system to a linear matrix
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inversion problem. If superscript n denotes the current iteration stage, let us define {55'}

as

{5S} = S n-s n-] (105)

A linear system is now set up to solve for {5S} in terms of the solution at iteration level

n - 1. For example, a term that involves (F,,)2 is written as

(F") 2 = (F n-' +5F)2_ (F'_-')2+2F '_-' 5F (106)

In what follows, the superscript n - 1 is dropped and is taken to imply the known values

of {S} at iteration n- 1.

are given below:

A few examples of the linearized formulas with this notation

(Fn) 2 = F 2 -4- 2F 5F

F{ = F_ + alSF

F_ = F,_ + blSF (107)

F" F_ = FF_ + SF(alF + F_)

3.2 Linearized system at (i,I)

The system is explicit in ( and rt because of our choice of the finite-differencing

scheme and is implicit in the surface-normal direction. The linearized system is repre-

sented at location (i,j), which corresponds to the solution at iteration level n as

["" at_t,m b_m'"] {5S/_} = {r_} (108)

where a k and bk_,m _,mare elements of the (7 x 7) blocks in the diagonal and superdiagonal

locations of the linearized block bidiagonal system. The superscript k denotes that the
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discretization corresponds to the midpoint of k and (k - t) points. The index I varies

from 1 to 7, depending on which element of equation (101) is being discretized; m varies

from 1 to 7, depending on which element of {55} it multiplies. The (7 x 7) blocks z,m

bk ] are the only nonzero blocks in the system above because we have a two-and t,m

point compact scheme in the k direction. The (7 x 1) vector {r_} corresponds to the

residual of equation (101), based on the solution {S} at iteration (n- 11.

For example, examine the discretization of the second element of the system repre-

sented by equation (101), which can be written as

(IL - wF)k - (IL- wP)k_ 1

2 k

-[2BI(FL)( + B2(F,_I + GL)q + 2#3FL + [34(FJ'il + GL) + 2#5G_I +/Y6/] k-1 } = 0

(109/

where

A(k = (k - (k-1 (110)

[a' I [bk ] and {rt k} for thecaseWe can now construct the elements of the blocks z,= , t,= ,

l = 2 from above by using the linearization procedure explained earlier. Some examples

are given below. The coefficient a_l is the coefficient of 5wk_l from the second element of

equation (101), which is discretized at (k- ½1, and b_l is the corresponding coefficient
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a21 = Fk_ 1

b21 =--Fk

ak2 = Wk-l ----
AG

2 /k-1

bk2 =--wk- --
ACk

(2_lalr 4- B2blG 4- _b3r 4- h4G)
2 \ ,'k

ak25 = --Ik-1 -- (2BlalF + B2blG 4- 2i)3F + .B4G'_
12 \ / _-1

r2k = negative of LtIS of equation (109)

Similar expressions can be derived from the 7 elements of the system that are

a krepresented by equations (98)-(100). These expressions for the 49 elements of [ l,m],
L J

[bk ] and the 7 elements of {r_} are given in appendix A.the 49 elements of t,,,, ,

3.3 Boundary Conditions

The boundary conditions at the boundary-layer edge (k = k,, ¢ = Ce) are given as

Fk=k_ = 1; Gk=k_ = Ge = --;v_ Hk=k_ = H_ (112)
Vr

The boundary conditions at the wall (k = 1, ( = 0) are given as

fk=l = Gk=l = 0

Hk=l = H1 or lk= 1 -----11 (113)

Wk= 1 = W w

The transformed normal velocity at the wall (wk=l or w, or Ww) is specified from equation

(45) as
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where _'w is defined for general three-dimensional flow or attachment-line flow as

i Sl i hi
thw = or _bw= (115)

pe#_ ue Pcffe f e

Suction rate is usually specified in terms of the suction-rate momentum value scaled by

the free-stream momentum as q, = plwl/poouoo.

For an adiabatic wall, [1 is specified as equal to zero. For a nonadiabatic case, if

the wall heat flux is known in dimensional units as _,_, then the wall heat flux equation

can be written as

.. ,.,/R* . (OT*'_ (116)
qw = (_/ZSpr#W \Oz*Jw

If we apply the transformation formulas and note that at the wall O" = E411 (from equation

(89)), then we obtain

., 7R* (T*It*)_ ¢qTepetteE411[ 'q_ = ('7- 1).Pr L*

where _q is defined for general three-dimensional flow or attachment-line flow as

(117)

__p u_ _/ f_ (118)or Cq
_q eZ81 fle#e hl

Application of the heat flux boundary condition involves the specification of Ix with

equation (117). A negative value of ,_, corresponds to a cold-wall situation (i.e., heat

flow in the negative z direction). If the wall temperature T,,, is the known quantity, then

HI is specified (from equation (24)) as

H1 = Hw =
T_

1 _-1 M2 "_+
2 ocj

(119)

The incorporation of the boundary conditions into the linear discretized system results

in a shift of the rows downward by four. This produces a system that is block tridiagonal.

The block tridiagonal system is defined by

[...
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where

6S k]

"&wk7

5Gk
= 611k

6Lk ]

+M++l
_a[k J

(121)
r_

r_
[+,]=

 iii
Note that the index k on a k, ilk, and @ corresponds to the location of a particular block

in the (ke x ke) system of (7x7) blocks. The index k of each of the elements in a

block refers to the discretization location. The subdiagonal, diagonal, and superdiagonal

blocks at row location k are obtained as

a3kl

a4kl

0

0

0

blkl blk2

bkl bk2

q, G
bkl bk2

akt 1

a_+l

.}}1
0

0

0

0

bk+_

,,1+.+a,++'+,+4a,++a,++
+ '+++4a+++a+++a2k2 a23

a+2 a+3 a_4 a3k5 ak6

a4k2 a4k3 a4k4 a4k5 a4k+

0 0 0 0 0

0 0 0 0

0 0 0 0

+'1+++'h +',++
a+3b bk24 b#5

bk33 bk4 bk35

¢,3 G +4
ak+1 ak+l akS: 1 a k+l

a_+ 1 a_: 1 ak6+41 a_t 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

bblff: :lffll :..,.,}t._-:, bblff:

a_17
a_7

ak7

ak47

0

0 0

0 0

_k46
ak+l

a_+l

0

0

0

0

bk+_

b_7
b_7
G

_k+l

:_-1

a7 +1

0

0

0

0

bk¢ 1

b_7q-1

(122)

(123)

(124)
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The boundary conditions at the boundary-layer edge result in a diagonal and RHS

block as

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

4

4
r4k ; k = ke

0

0

(125)

The diagonal block _'1 and RHS block 51 that result from a specified wall heat flux

condition (adiabatic or otherwise) are as given below (which corresponds to 5[1 = 0):

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 l 0 0 0 0

0 0 0 0 0 0 1

aktl _k+l k+l k+l k+l ok+l k+l

a_? 1

For a specified wall temperature condition, the system becomes

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

aktl _k+l ak_, _k+l ak_l ak_l _k+l
•"4 a_+l

0

0

0

0

rk+l

r_-+l

F_ +1

; k = 1 (126)

0

0

0

0

rk+l

ir_+ 1

L4+1

;k=l (127)

Appendix A summarizes the information required to construct the block tridiagonal

system. Implementation of the boundary conditions also requires an update that is based

on the current solution, which is done with the update of the nonlinear terms.

Because the Pade formula is a compact scheme based on the solution variables and

their derivatives at two points that span the local cell center, a stretched grid can be

employed without degradation of the fourth-order accuracy of the method. A stretching
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constant k, is defined to exponentially stretch the grid in the ( direction as

(128)

3.4 Discretization in the (i,j) Directions

In the fully three-dimensional region (away from the attachment line and side bound-

aries, j = 1 or j = ny]im), the differencing in the surface directions ( and 7j is done to

second-order accuracy. In accordance with the parabolic nature of the equations, the

derivative is obtained by the three-point upwind-differenced formula

(fe)_,j = a_f,,j + a2f,-_,j + a3fi-2,j

9 9 '3

al = (A(;- zx(,_,)lA; = -A ;la; = zx  _,lA (129)

A = ,--._iA_i-l(A_i 4- A_i-1); A_i = _i,j - _i-l,j; A_i-1 = _i-l,j - _i-2,j

When i = 2, the first-order formula with just two points is used, which results in the

coefficients

al = l/A(2 = 1/(,_2 -,_1); a2 = -al; a3 = 0 (130)

A function _i is used to blend the first-order and second-order formulas in a small number

of marching steps. The short notation {aF} used in equation (103) can thus be expanded

in terms of the coefficients given above. At ,_ = 0, the attachment-line equations do not

contain any 0/0( terms; this condition is incorporated into the solution scheme by setting

up a flag set to zero for the attachment-line solution and to unity for i > 1.

The q differencing is accomplished with a combination of two schemes. For situations

where the profile G is positive at all normal grid-point locations, the standard left-pointing

three-point second-order scheme (which we refer to as the L scheme) is used. When
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the profile has negative values, the "zig zag" scheme (also called the Z scheme), first

proposed by Krause (ref. 4), is employed. For moderate crossflow situations, this scheme

automatically satisfies the zone-of-dependence principle that is outlined by Wang (ref. 5).

The finite-differencing formula that combines the above two schemes can be written as

(fTI)i,j = blfi,j + b2fi,j-1 + b3fi,j-2 -k b4fi-l,j + b5fi-l,j+l (131)

The coefficients take these values for the L scheme:

bl = (_q_ - A,__,)/_; b2 = -Aq_/A; b3 = _q__l/_; b4 = b5 = 0

A = ,2._rl/A.qj_l('2._q. / + Arlj_l); /kq./ = qi,j - Ill,j-l; _--_r]j-1 = 7]i,j-1 - Tli,j-2

The coefficients take these values for the Z scheme:

]
bl = _(71ij - qi,j-a + _ti-lj+a - T/i_a,j)

1 1
b2 =--_(_,._-qij-1); b3 =0; b4 =--_(qi-ij+_-qi-_,j); b5 =-b4

(132)

(133)

At q -- 0 (left boundary) or at q -- T/re,× (right boundary), no O/Oq terms are present

in the LISW equations; this condition is incorporated into the solution scheme by setting

up a flag set to zero for the boundaries j = ! and j = nylim. The flag is set to unity in

the fully three-dimensional region. As stated earlier in section "Quasi-Two-Dimensional

Equations for Initial Conditions," a factor _ = _ (_) is used to blend the LISW solution to

the fully three-dimensional solution at the boundary-adjacent points. The short notation

{b£} that is used in equation (104) is thus obtained directly from equations (131)-(133).
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4. INVISCID INTERFACE

The three-dimensional boundary-layer solution procedure is based on the specifica-

tion of the edge quantities u_, v_, and T_ on a surface grid defined in the coordinate

directions ( and q. In addition, the computation of the edge density p_ requires the spec-

ification of the inviscid pressure P or the pressure coefficient Cp (for flows that involve

a shock between the free stream and the attachment line). In the general case, for a

nonorthogonal boundary-layer grid, the metric quantities h_, h2, and g12are also assumed

to be given. Further, the edge value of viscosity t_ is computed from T_ with the Suther-

land formula (equation (33)). The above quantities are referenced to the free-stream

quantities (U_o, P_o, and T_) and the reference length L_o.

If we assume that a negligible interaction occurs between the viscous and inviscid

regions, the edge conditions can be obtained by solving the three-dimensional Euler

equations on a sufficiently fine mesh. In some cases such as low-speed flow, a

potential panel code may be substituted in place of the Euler solver, after which an

interface procedure is necessary to process the inviscid results to express them in the

form required by the boundary-layer code. Specifically, this procedure involves (a) the

accurate location of the inviscid attachment line, (b) the generation of the boundary-layer

grid which originates from the attachment line on the upper or lower surface, (c) the

calculation of the edge velocities in surface grid-oriented directions, and (d) the output

of quantities in the required form for the boundary-layer code.

Two approaches are used to calculate the edge velocities (u_, v_) and edge tem-

perature T_. The first approach is to interpolate the inviscid pressure distribution onto

the boundary-layer grid and then calculate the edge velocities and temperature by solv-

ing the limiting equations of the boundary-layer equations at the boundary-layer edge.
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These limiting equations (henceforth called the BL-EDGE equations) are hyperbolic and

can be solved with a marching method that is analogous to the boundary-layer solution

procedure. The source term in these equations is the pressure gradient in the two di-

rections ( and T/. The second method involves the interpolation of all the required edge

quantities from the inviscid grid to the boundary-layer grid.

The first procedure is, in principle, more consistent with the boundary-layer solution

method; however, the solution of the BL-EDGE equations may be slightly different from

the solution of the Euler equations. This mismatch in the edge quantities from the two

solutions is attributed to (a) the terms dropped in the BL-EDGE equations, based on the

boundary-layer assumption, and (b) variations in the finite-differencing schemes. In one

case, we have the edge velocities computed from the Euler equations, whereas, in the

other case, the edge velocities are computed from the limiting boundary-layer equations,

based on the Euler pressure gradient. The BL-EDGE equations also assume that the

edge total enthalpy is a constant, which is not necessarily true for the Euler solution.

Note also that accurate enforcement of the condition _3P/c3x = 0 at the attachment line

is difficult from a coarse inviscid grid, which may necessitate that the interpolation near

the attachment line be linear rather than spline to ensure a negative pressure gradient

at the attachment line. The interface program includes an option to calculate the edge

conditions by either method.

4.1 Attachment-Line Relocation

After the surface pressure distribution is obtained from the inviscid calculation, the

initial location of the attachment line is obtained by scanning for a maximum pressure in

the vicinity of the leading edge of the wing. However, note that the true attachment-point

location may be located within a bandwidth of one grid point on either side. The true
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location of the attachment point is where the surface velocity in the direction normal to

the attachment line is equal to zero.

In this procedure, the Cartesian velocity components of the Euler solution are con-

verted to surface-oriented velocities that correspond to a boundary-layer surface grid

generated from the initial attachment-line location. This velocity conversion is based on

equations (13)-(17). In general, the component u_ at the initial attachment point will be

nonzero. This point is then relocated in the positive or negative direction, depending on

the value and sign of u_ and the local estimated value of 0,_/0s1. For example, for the

upper surface at an angle of attack, a relocation in the positive direction means that the

point is moved to include more of the lower surface; this is done when u_ has a positive

value. After the points are relocated with this logic, a new boundary-layer surface grid

is generated from these attachment-line locations. New values of velocity components

are obtained by interpolation. This procedure is repeated until the value of u_ at each at-

tachment point is less than a specified tolerance value. A parameter _,t is used to relax

the relocation displacement and to ensure that the iterated locations remain within the

grid-point bandwidth mentioned above. Upon convergence, the pressure is interpolated

with a spline routine from the inviscid grid to the final boundary-layer grid.

4.2 Edge Values by Interpolation

Edge velocities and temperature are obtained by spline interpolation. For a fine

inviscid grid, this method usually produces smooth edge conditions comparable to the

solution from the BL-EDGE equations.

4.3 Edge Values from BL-EDGE Equations

The three-dimensional boundary-layer equations (eqs. (19) and (20)), when applied

32



at the edge of the boundary layer, result in the BL-EDGE equations and are given as

ue Ve . ( hlh_ h1912 ) 1--hl tte,z -t- _ tte,y nt- C24 lz;_ -t- C25 uct¥ -[- 026v 2 = Cf3_ Px + --C_3 PY _/p_M_ (134)

ue ve ('h2g,2 Pz h_h2 _ 1 (135)
'tPe M_

Further, H_ is assumed to be constant. With P specified from the inviscid solution, the

following equation provides closure for this hyperbolic set of equations:

Te=Hc(I-t-'_M_) "7-1_. M_q_
(136)

The solution to the above system is obtained with a discretization that is identical to the

full three-dimensional boundary-layer equations in the two surface directions. With the

abbreviated notations for the _ and r/directions, a discretization with Newton linearization

yields the system

[ ' (2alue+{aue}+blvc___
_-[l(alt'e + {ave})

where

+ {b,,o}) ]
7_2(allte_-[- 2blt¥ -[- {bye})

nl 0£ o 2 oy (137)

The terms marked by an underline apply to the three-dimensional region only. These

terms are set to zero per the LlSW condition at j = I and j = ny. Note that the Py terms

are retained for LlSW, however.

The solution is obtained by inversion of the system, which is followed by an iterative

update for nonlinear terms.
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5. BL3D EXAMPLE CASES

Two test cases are presented here. The first test case is that of a moderately swept

(A = 33°) tapered wing in subsonic flow. The streamwise cross sections of this wing

correspond to NACA 0012; however, for generality, calculations of metrics and other

parameters are done with the assumption that the wing is defined in terms of discrete

coordinates. The second test case is a highly swept (._ = 70°) wing in supersonic

flow, similar in planform to that of the F16XL aircraft, with cross sections defined in

discrete coordinates. For both cases, the inviscid results are obtained by solving the

Euler equations. The computer code CFL3D (ref. 6) is used for this purpose, with the

viscous terms set to zero for the Euter calculation. An interface routine processes the

results and feeds the resulting edge conditions to BL3D. For validation (case 1 only),

the results obtained from BL3D are compared with the results from the thin-layer Navier-

Stokes code, which is also obtained with CFL3D. For the supersonic wing case, we

present comparisons of the BL3D results with the solution from a conical swept wing

boundary-layer code developed by Kaups and Cebeci (ref. 3). In addition, runs are

made with a uniform suction distribution (case 1 only). These results are also compared

with the corresponding Navier-Stokes solution.

5.1 Geometry and Conditions for Case 1

The planform of this wing is a trapezoid for which the root chord is 1 ft and the

leading-edge sweep is constant at 32.73 °. The wing has a span of 2 ft and the trailing-

edge sweep is constant at 18.88 °, which results in a tip chord of 0.398 ft. The tip-section

leading edge is at x'* = 1.286 ft and the tip-section trailing edge is at x'* -- 1.68.1 ft.

The streamwise cross section of the wing corresponds to the NACA 0012 section. The

free-stream conditions are Moo = 0.5, ,_ = 2°, P* = 2116 psf, and Y_o= 520°R. The wing
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is assumed to be symmetrical about the root chord plane.

5.2 Euler Solution for Case 1

The surface distribution used in the Euler grid consists of constant percent chord lines

and constant percent span lines. In the spanwise direction, the grid has 41 points on the

wing surface, which corresponds to a span distance of 0.05 ft between grid lines. In the

chordwise wraparound direction, the grid has 257 points, and in the wall-normal direction

the grid has 49 points that are stretched exponentially. The grid is further extended into

the wake region and off the tip of the wing. The Euler computation is done with the code

CFL3D. The results from the calculation are obtained at the centers of the grid cells;

thus, 40 cell centers exist in the spanwise direction. Let us denote these locations by

the symbol j(INV). To avoid the region very close to the symmetry plane and the wingtip,

we restrict our analysis to the region 7 < j(INV) < 35, which corresponds to 0.325 < gr. <

1.725. The middle location of this region is at j(INV) = 21, which corresponds to y'* = 1.025.

Figure 2(a) shows the surface distribution of the Euler grid-cell center points (note

that only every fourth point is plotted in the chordwise direction for clarity). Figure 2(b)

shows the corresponding boundary-layer grid on the upper surface. The boundary-layer

grid originates from the attachment line, and the z-coordinate is measured in terms of

the surface arc length, which is normalized by a length such as the local chord length or,

in the present case, by the maximum arc length. The spanwise coordinate y is defined

as the local span distance from the symmetry plane.

The inviscid results used in the interface routine are the three Cartesian components

of the velocity on the wing surface, the inviscid wall density, and the temperature.

The pressure coefficient on the surface can be calculated from the above. Alternately,

the pressure coefficient can be specified, and the edge temperature can be calculated
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(assuming that the edge density is given). Figure 3 shows the variation of the pressure

coefficient obtained from the Euler solution at three span locations where j(INV) = 7, 21,

and 35. Note that the effect of the taper is to create a favorable pressure gradient in

the spanwise direction.

5.3 Euler-BL3D Interface for Case 1

The details of the procedure for relocating the inviscid attachment line are presented

in Figures 4-7. Figure 4 shows a plot of the iterated attachment-line locations. This plot

is in terms of (fl, _) of these surface points and corresponds to a view from upstream of

the wing leading edge (not to scale). The initial attachment-line location that corresponds

to the peak in the pressure coefficient near the leading edge is shown in solid symbols.

The inviscid grid points on the upper and lower sides of this line are shown as dashed

lines. These lines bound the uncertainty on the true attachment-line location because of

the coarseness of the inviscid grid. Also shown in Figure 4 are the iterated locations of

the attachment line. As explained in "Attachment-Line Relocation," the iteration is based

on a relocation strategy such that the local inviscid velocity vector is exactly tangential

to the attachment line. Note that the line that joins the final attachment-line locations is

much smoother than the original line.

Figure 5 shows the velocity ue interpolated at the attachment-line location that

corresponds to successive iterations. Note that the initial values of u_ are relatively

high (_+0.04) and that the objective of driving _t_ to near zero (< 0.0001) is achieved

in seven iterations. Figure 6 shows the corresponding variations of the velocity _,_on

the attachment line. Here again, the final v_ variation is smooth. Figure 7 shows the

resulting variation of Cp on the attachment line.

The boundary-layer surface grid is generated from the attachment line on the upper
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or lower side. In the present case, 40 points are generated in the chordwise direction

between the attachment line and the local 5 percent chord location. Beyond this point,

the boundary-layer grid coincides with the inviscid grid, and no interpolation is required.

The stretching of the surface distribution near the attachment line is done so that the grid

blends smoothly with the inviscid grid (at the 5 percent chord location in the present case).

After the generation of the surface grid, the inviscid pressure is interpolated to the

boundary-layer grid. The boundary-layer calculation is restricted to the region that is

bounded by the j(INV) = 7 and j(INV) = 35 spanwise locations. The regions outside

these limits are unsuitable; the locally infinite-swept wing assumption does not apply in

these regions because of the proximity of the flow to the symmetry plane or the wingtip.

The boundary-layer grid notation denoted by j(BL3D) is thus based on the left boundary

of j(INV) = 7. In other words, the j(BL3D) = 1 location is identical to the j(INV) = 7 location.

Figure 8 shows the chordwise variation of the interpolated Cp values on the boundary-

layer grid at three spanwise locations. The interpolation is accomplished with a spline

routine. In the present case, because the inviscid grid has good resolution near the

leading edge and the inviscid results are smooth in this region, no smoothing is required.

However, in the absence of the above, a smooth spline interpolation may be required.

In this event, the amount of smoothing and the resulting interpolated pressures must

be carefully monitored. If the streamwise pressure gradient at the attachment line is

not negative, a marching of the boundary-layer solution away from the attachment line

may not be possible. Spline and other higher order interpolation methods are likely to

introduce nonnegative pressure gradients at the attachment line. Hence, in some cases,

a locally linear interpolation may be required near the attachment line to ensure negative

pressure gradients.

All physical distances, such as the root chord length, are normalized by a reference
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length L*. Further, the boundary-layer grid # (and _-) coordinate is defined as the local

chordwise arc length divided by the local maximum arc length up to the trailing edge. The

boundary-layer grid y- (and also T/-) coordinate is defined as the local spanwise distance.

With this definition, the metric quantities can be computed with equations (1)-(3). For

the present case, the variation of hi, h_, and g12 in the chordwise direction at the j(BL3D)

= 1 location is shown in Figure 9.

As explained in "Edge Values by Interpolation," the edge velocities can be obtained

by direct interpolation. In this method, the three Cartesian velocity components from

the inviscid solution are interpolated. Subsequently, the edge velocities in the z and y

directions are obtained by an inversion of the system given by equations (13)-(17). The

edge temperature is also interpolated to complete the interface to the BL3D program.

In the second method, the BL-EDGE equations are solved with the input pressure

distribution as outlined in "Edge Values from BL-EDGE Equations." Figure 10 shows a

comparison of the edge velocities obtained by either method at the j(BL3D) = 1 location.

Note that the two results agree well. Figure 11 shows contour plots of the edge velocity

ue on the upper surface of the wing that are obtained from the two methods. A slight

difference in the variation is caused by the fact that the BL-EDGE solution assumes

a locally swept-wing condition at j(BL3D) = 1 and j(BL3D) = 29. Another cause for

this difference is that the finite differencing used in the Euler solution is different from

that used in the BL-EDGE solution. However, for the present case, both results are

acceptable. Figure 12 shows the corresponding comparison of the edge velocity v_. The

edge temperature variations also compare well.

5.4 BL3D Solution for Case 1

The three-dimensional boundary-layer solution follows the sequence below:
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(a) Input boundary-layer edge data. The input consists of the boundary-layer grid

dimensions (u=, ny); the coordinates (x, y); the metric quantities hi, h2 and g12; and

edge values u_, re, and T_. Further, if the streamline between the free stream and

the boundary-layer attachment line contains a shock (nonisentropic region), then the

input of Cp or P is required to calculate the edge density p_. Other inputs are the

free-stream conditions, the reference length, and other parameters that pertain to the

solution procedure.

(b) Setup of initial profiles. Solution profiles that correspond to the similarity solution

for a flat plate or wedge are used as initial profiles to start the locally infinite, swept

attachment-line solution at i = 1, j - 1 of the boundary-layer grid.

(c) Setup of edge coefficients. This setup is based on the edge conditions and

gradients. The coefficients A_, B_, C,, and D, are calculated.

(d) LISW solution. This solution is obtained at the two boundaries j = 1 and j = ny]im

by marching in the x direction. The terms that involve derivatives in the y direction are

set to zero for this case. Further, at i -- 1, the attachment-line equations are solved.

(e) Solution of the three-dimensional region. Given the initial plane solution and

the side boundary solution, the three-dimensional region can now be solved with the L

scheme or the Z scheme for the span derivatives. A switching from the L scheme to the

Z scheme occurs when the profile of G has a negative element.

Depending on the pressure distribution, the solution region can be restricted to (1,

nxlim), (1, nylim). After the convergence of the solution at each (i, 3) point, quantities

such as the boundary-layer thickness, the skin-friction coefficient, and the crossflow

Reynolds number are calculated.

39



5.5 BL3D Results for Case 1

Comparison of the BL3D solution is made with profiles that are obtained from the

solution of the NS equations with the code CFL3D. This code was run on a grid with the

same surface distribution as the Euler grid, but with 81 points in the wall-normal direction.

The grid stretching was designed to include about 30 to 40 points in the boundary layer

of the flow. The flow was assumed to have an abrupt transition to turbulence at the 25

percent location on the wing. This assumption ensures that the flow remains attached

and thereby avoids the numerical problems caused by the laminar separated regions.

The profile comparisons are restricted to locations upstream of the 25 percent chord

station. Because of the large amount of data, the comparison plots are presented for a

few locations in the flow that are representative of the entire flow solution.

Figures 13-18 compare of the BL3D and NS profiles at the j(BL3D) = 1 plane.

We present comparisons at six locations in the chordwise direction. These locations

approximately correspond to chord locations of 1, 2, 3, 6, 12, and 23 percent. Shown

are the profiles of spanwise velocity v, chordwise velocity u, and temperature T. At

these locations, the spanwise velocity profile assumes different shapes with inflection and

reversal regions. The NS profiles are shown in open square symbols. The BL3D profiles

at this j location are the solution of the LISW equations. In spite of this assumption,

very good agreement is obtained until the 23 percent chord location. Note that the edge

velocities used as input for the BL3D computation are the interpolated values from the

inviscid code. The edge velocities that are computed from the NS solution are slightly

different than those from the Euler solution. This difference is the main contributor to

the lack of better agreement between the two solutions. Also, some differences are

attributable to the fact that the profiles are not compared at exactly the same location.

The temperature profiles at the 12 percent chord location and beyond are different
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presumably because the boundary-layer interaction becomes more significant in this

region. Furthermore, some differences near the attachment point are caused by the fact

that the attachment point from the NS solution is shifted slightly compared with the Euler

location. Overall, the agreement is satisfactory and validates the BL3D results.

The program also calculates the crossflow within the boundary layer relative to the

local edge streamline direction. In the present report, crossflow is defined as negative

when pointed toward the wing root. In Figure 19, we compare the streamwise velocity

profiles u8 at six representative locations with the corresponding NS profiles. Figure 20

shows the corresponding crossflow velocity profiles of v,. The crossflow that is predicted

by the BL3D code is slightly larger than the NS solution in the negative crossflow region.

The crossflow Reynolds number Rec£ is defined as

ReC_ p = Ue'maxOO'lPe (138)

* ,* and 8_.1 is thewhere V,,m,_×is the maximum absolute value of the crossflow velocity v_

normal distance at which the v_ profile decays to less than 10 percent of V*,m_,x (when

scanned from the edge down to the wall). This parameter has a strong correlation to

the growth of crossflow instabilities in a three-dimensional boundary layer. Figure 21

shows the variation of this parameter in the chord direction at the j(BL3D) = 1 location

compared with the NS solution.

Figures 22-30 present the profiles at the j(BL3D) = 15 location at the { = 1.025

spanwise station. The overall comparison is good, although in some locations differences

in profiles exist mainly because of the fact that the edge conditions from the NS and

Euler results are different.

Figure 31 shows the contours of the boundary-layer thickness and the skin-friction

coefficient in the x direction obtained from the BL3D calculation. The contours are smooth
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and blend smoothly with the infinite swept-wing solutions at the j boundary locations.

Note that the flow is close to laminar separation as indicated by the near-zero values

of Cf,x at ,_ = 0.25.

Figure 32 shows the contours of the crossflow Reynolds number and the maximum

absolute percent crossflow on the upper surface. The values of RecF for this case are

under 100, and the maximum crossflow reaches a maximum of about 12 percent.

5.6 Results With Suction for Case 1

Solutions were obtained from the NS and BL3D solvers with boundary-layer suction.

A constant amount of suction q, (equal to 0.0005) was assumed. Figure 33 shows a

comparison of the resulting solution profiles at the j(BL3D) = 15 plane. The profiles with

no suction are also shown for comparison. Figure 34 shows the resulting Rec£ values;

a substantial reduction is produced in the crossflow with suction.

The attachment-line Reynolds number Re0 is defined as

V 'k i1_ '_

Ree = _,i=l m,i=lfle,i=l (139)
#*,i=]

where e* is the momentum thickness. This parameter is important because of

attachment-line stability considerations. Figure 35 shows a comparison of the Re8 values

at the attachment line both with and without suction. The comparison with the values

obtained from the NS solution is satisfactory.

5.7 Geometry and Conditions for Case 2

Case 2 is the boundary-layer flow on a supersonic wing of 700 sweep at a free-

stream Mach number Moo of 1.6 and at an angle of attack of 0 °. The planform is similar

to the wing of the F16XL aircraft. The other input free-stream conditions correspond

42



to an altitude of 40,000 ft ( P% = 393.13 psf, Tgo = 390°R). The free-stream Reynolds

number is 3.06x 106 per ft.

Figure 36 shows a top view of the Euler grid used in this case, with an inset showing

a chordwise section. The wing is assumed to be symmetric about the (x'*, z'*) plane at

the span station j(INV) = 1, which is at a distance of 27 in. from the fuselage axis. The

flow region of interest corresponds to the y'* range of 72.8 to 132.2 in.

5.8 Euler Solution and BL3D Interface for Case 2

The inviscid pressure distribution on the wing upper surface, obtained from the Euler

solution, is shown in Figure 37. Here, the streamwise distances are shown in terms

of x'* '* which corresponds to the chordwise distance from the local leading-edge-- .r LE ,

location. The variation of pressure coefficient and the wing cross section at the span

location j(INV) = 16 (90.2 in. from fuselage axis) is shown in Figure 38. Attached laminar

flow does not exist beyond a x'* _* distance of 3 ft; hence, the calculations reported-- .7:LE

here are for an x'* - xL£'* of less than 3 ft.

The interface program is essentially in the same form as case 1, except for minor

changes in reading in and manipulation of the Euler solution input. The boundary-layer

grid is specified as containing 40 points clustered within the 2 percent chordwise location.

The edge velocities and temperature are calculated either by direct interpolation or by

solution of the BL-EDGE equations. Good comparisons of the edge values u_, v_, and

T_ from the two methods were obtained, as shown in Figures 39-41. Figure 42 shows a

comparison at the span station j(BL3D) = 5. In the following section, the boundary-layer

solution at this span station will be presented in detail.

5.9 BL3D Solution for Case 2

Following the interface run, the present code BL3D was run in a region bounded by
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1 < j(BL3D) < 9. The results reported here correspond to the solution at j(BL3D) = 5.

For comparison, the Kaups-Cebeci code was also run at this section.

Figure 43 shows the comparison of the us, vs, T profiles at two chordwise locations

close to the attachment line at the span station j(BL3D) = 5. The agreement is good,

except for a very small reduction in the magnitude of the crossflow profile obtained

from BL3D. Figure 44 shows the comparison of the profiles at two locations (1 ft and

2.26 ft in surface arc length away from the attachment line). Here, the streamwise and

temperature profiles agree well. The crossflow profile from BL3D shows slightly reduced

crossflow. Note that because the flow becomes increasingly three dimensional away

from the attachment line the two codes are expected to differ in solutions.

Figure 45 shows a comparison of the resulting crossflow Reynolds number values

from the two computations. Again, the reduced crossflow predicted by BL3D can be

noted.
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Appendix A

Coefficients of the Linearized System of Compressible Three-Dimensional

Boundary-Layer Equations Discretized With a Fourth-Order Pade Formula

(1) Coefficients of Continuity Equation:

alkl = --I

akl2 = --Clk(Cll)k_ 1

akl3 = --Clk@12 )k_ 1

akl4 = 0

akl5 = --C2k(ell)k_l

a_ = --_k(_l_)k-1
a_7 = 0

b_l = 1

b_2 = --Clk@ll) k

b_3= -_1k(_12)k
b_4 = 0

b_6 = C2k(el2)k

b_7 = 0

r_ =--(qll)k+(qll)k_l A-Clk(ql2)k+elk(ql2)k_l -- e2k(q13)k-t-C2k(q13)k_l

qll = W

ql_ = A1F_ + A2F + A3G, 1 + A4G

q13 = A1L( + A2L + A3M, 1 + A4M

Cll = alA] + A2

e12 = blA3 + A4

1A_
clk = _- _,_

A-1



(2) Coefficients of _ Momentum Equation:

a2kl = Fk-1

a2k2 = Wk-1 -- Clk(e21)k-1 -- C2k(e22)k-1

ak3 = --Clk(623)k_ 1 -- C2k(e24)k_ 1

ak4 = --¢lkB6

ak 5 -- --lk_l -- C2k(e21)k_l

bk22 = --Wk -- Clk(e21)k -4- C2k(e22)k

bk23 = --¢lk(e23)k 3L C2k(e24)k

bk4 = -c]k B6

b2k5= tk + c2k(e21)k
b2k6= c2k(*23)k
b2k7= c2k_6

r2k = --(q21)k -I- (q21)k-i -1- Clk(q22)k -F Clk(q22)k_l --C2k(q23)k -1- C2k(q23)k_l

q21 = (1L - wF)

q22 = B1 (F2)_ + B2(FG)u +/_3F 2 + [34FG +/35G 2 +/_6H

q23 = 2BI(FL)_ + B2(FM + GL),_ + 2[_3FL + B4(FM + GL) + 2115GM + [3_I

e23: (blB2-t-B4)F+2[_sG

A-2



(3) Coefficients of _ Momentum Equation:

ak31 = Gk_ 1

ak32 = --Clk(e31)k_ 1 -- c2k(e32)k_ 1

ak33 = wk_ 1 -- Clk(eZZ)k_ 1 -- C2k(eZ4)k_ 1

ak34 = --clkC 6

ak35 = --c2k(e31)k_ 1

a_ = -c2kdo

b3kl =-Gk

b3k3= -wk - _lk(_33)k+ _2k(_34)_
b3k4= -_1_d6
b3_5= ¢2_(_31)k
bk36 = lk "4- C2k(e33)k

bk37= _2kd6

r_ = --(q31)k+(q31)k_l-t-Clk(q32)k+Clk(q32)k_l --C2k(q33)k-t-C2k(q33)k_l

q31 = (IM - wG)

q32= C,(FC)_+ C2(C2),
q33 =

e31 --

e32 =

633 =

¢34 =--

+ C3F 2 + C4FG + C'sG 2 + C'6H

CI(FM + GL)_ + 2C2(GM), 1 + 2CaFL + C4(FM + GL) + 2CsGM + C6I

(o, 1
2C3L -4- (alCl-t-C4)M

(alC1-4-C4) FnL (2blC2-Jc2C5)_

(alCI-FC4)L+ (261C2-1-2C5)"

A-3



(4) Coefficients of Energy Equation:

a_l = Hk-1

a_2 = --Clk(e41)k_ 1 --C2k(e42)k-1

a_3 = --Clk(e43)k_l --C2k(e44)k-1

a_4 = Wk_l--Clk(e45)k_ 1 --c2k(e46)k-1

a_5 =--C2k(e41)k_l

a_6 = --C2k(e43)k_ 1

bkl = -Hk

b4k2= -_k(.41)_ + c2k(.42)_

bk43 = --Clk(e43)k + C2k(e44)k

b_ = -_k - _k(_4_)k+ _2k(_46)k

b_7= (lp)k+ _2k(_45)k

r_ -- --(q41)k+(q41)k_l-l-Clk(q42)k+Clk(q42)k-l--C2k(q43)k -t-c2k(q43)k-1

q41 = (lfl - wH)

q42 = DI(FH)_ + D2(GH), I

q43 =

e41 _---

e42 --'--

e43 =

C44 =

C45 _---

e46 =

+ D3FH + D4GH + D5

DI(FI + HL)_ + D2(GI + HM)_ + D3(FI + HL) + D4(GI + HM) + 015

(aiD1 + D3)H

(aiD1 + D3)I

(biD2 + D4)H

(biD2 + D4)I

(aiD1 + D3)F + (biD2 + D4)G

(aiD1 + D3)L + (biD2 + D4)M
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(5) Coefficients of F-L-L Equation:

a51 =

a52 =

a53 =

a54 =

a55 =

a56 =

a57 =

--C2k l-__l Lk-1

1

-1 - c2k1--__l(_sl)__1
1

--C2kl__l(e52)k-1

1 (--l'+wlk_l
--Clk -- C2k __lk--_

0

b51 = C2k_kLk

1

bs_= 1+ c2k_(e51)k

b53 = C2k_-_(e52)k

b54 = C2k B6

b55 = --elk -_- C2k _--_(--l' A- W)k

b56 = 0

b57 = 0

r_ = --(qS1)k+(OS1)k_l +Clk(q52)k+Clk(q52)k_l--C2k(q53)k+C2k(q53)k-1

q51 = F

q52 = L

1{q53 = _ BI(F2)_ + B2(FG)_ +/?3F 2 + B4FG +/_sG 2 +/)6H

- Ll' + wL + A1FF_ + A3FG,}

651 --_ (2al"l 7L2[_3-_-alA1)F-_ (blB2-_-[_4)G-_-A1F,_-A3 G71

652 : (biB2-_- [_4 -4- blA3)F -_- 2B5G
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(6) Coefficients of G-M-M Equation"

a61 = --C2k-].Z_1k-1
lk-1

a62 = --C2k _ l--'_-(e61)k_l
%-1

1

a65 = 0

1 i
_ = -c,_ - c_l-__(-l +_)_-1
a67 = 0

b_l = c2k_Alk

b62= c2k¼(_6a)k
1

b63 = 1 + c2k_(e62)k

b_4 = c2kld6
tk

b65 = 0

b66 = --Clk -t- C2k _-_(--l' "4- W)k

b67 = 0

rk = --(q61)k q- (q61)k-1 q- Clk(q62)k + Clk(q62)k-1 -- C2k(q63)k+C2k(q63)k-1

q61 : G

q62 = ._I

1{q63 = 7 CI(FG)_ + c_(c_). + d_r 2+ d_Fc + d_c 2+ d_H

- Ml' + wM + A1GF_ + AaGGu_
)

¢61 = 2(_3F + (a,C, + C4 q-alA1)G

e62= (alCI+C4)F+(2blC2+2Cs+blA3)G+AIF,+A3Grl
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!

(7) Coefficients of H-I-! Equation:

a71 = --c2k (lp)k_ 1
--Wk_ 1

1

a72 = -_2k (lp)__1(_71)k-1
1

1
= -1 - c2k_(_73)k_la74

t I I

_'P]k-1

a75 =0

a76 ---- 0

1
.77 = -_1_ - _2k,I _ (-l_ + w)_-x

k'P]k-I

1

571 ---- C2k(_v)tWk
P)k

1

b72 =-- C2k (_._L(e71)k

1
b73 = C2k--(e72)k

(lp)k
1

b74 = 1 q- C2k._-'_-_---.(673) k
(lp)k

b75 = 0

b76 = 0

1
b77 = -clk + c2k--(-lp + w)k

(Ip)k

rk = --(q71)k + (q71)k-1 + Clk(q72)k + Clk(q72)k-1 -- C2k(q73)k + c2k(q73)k-1

q71 = H

q72 = I

q73 = _-_{DI(FH),
+ D2(GH). + D3FH + D4GH + D5

- II'p + wI + A1HF_ + A3HG,_}

e71= (a,D, + [93 + a]A1)H

e72 = (blD2 -4- [_4 + blA3)H

e73= (alDI+D3)F+ (blD2+£)4)G+A1F_+A3Go
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Appendix B

User's Manual for the BL3D Program

The BL3D program package consists of a collection of program files, input files, and

output files that relate to the solution of three-dimensional boundary-layer flow on a swept

wing. In addition to the BL3D program files, the program package includes files related

to the Euler and Navier-Stokes calculations for the two example cases and the interface

programs. Some of these files are not directly related to the core program BL3D, but

were developed for the validation of the code. These include Euler and Navier-Stokes

grid and solution files as well as programs used in processing the Navier-Stokes results

for comparison with the BL3D results. All the files have been archived on the NASA

Langley Masstor system and can be made available per individual request.

Table 1 at the end of this section gives a list of important computer variable names

used in the programs and the corresponding translation to the variables used in the

formulation as listed in "Nomenclature". This list may be useful for customizing the

program for a particular application.

Program Structure

The files are divided into subdirectories as follows. Each subdirectory contains a

README file with a short description of the contents of the subdirectory and instructions

for running the programs.

bl3d/euler/casel. Contains files that correspond to generation of the Euler

solution for case 1 (subsonic swept wing) with the code CFL3D. The program CFL3D

is not included.

bl3d/interface/casel. Contains interface programs and input files used in

processing the Euler solution for case 1 and generation of the data file required in the

BL3D run.
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bl3d/bl/casel.

bl3d/ns/casel.

CFL3D for case 1.

Contains the BL3D program files used for case 1.

Contains files that correspond to the Navier-Stokes solution with

Similarly, bl3d/euler/case2, bl3d/interface/case2, bl3d/bl/case2,

bl3d/ns/case2 are subdirectoriesthatcorrespond to case 2 runs for a supersonic

swept wing. The subdirectory bl3d/ns/case2 contains files that relate to the applica-

tion of the Kaups-Cebeci code for case 2.

The files in the subdirectories bl3d/euler and bl3d/ns are not of direct interest

here. The README files in these subdirectories and comment statements in the program

files may be consulted for more detailed information. Presented below are details on the

interface and boundary-layer program files for the two test cases.

Interface Program Inputs

The inviscid results are assumed to be available on a grid that is generally (though not

strictly) oriented along the constant span and constant chord directions. The boundary-

layer grid stretching, the interpolation, and the BL-EDGE solution procedure are based

on this assumption. The surface grid is also, in general, nonorthogonal. The inviscid

Euler results are assumed to be available in either of the two following formats:

(a) Two separate files, one of which contains the grid points and the other, which

contains the Euler solution at the cell center points. The actual read statement (e.g.,

from bl3d/interface/casel/rinvis, f) is as follows:

The grid file:

open(unit=l,file='grid',form='unformatted',status='old')
read(l) jdim, kdim, idim

read(1) (((xg(j,k,i),j=l,jdim),k=l,kdim),i:l,idim),

(((yg(j,k,i),j=l,jdim),k=l,kdim),i:l,idim),

(((zg(j,k,i),j=l,jdim),k=l,kdim),i=l,idim)

The solution file:
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dimension titlw(20)

open(unit=l,file='rest.bin',form='unformatted',status='old,)

read(2) titlw, xmachw, jt,kt, it,alphw, ntr,ntime

read(2) ((((q(j,k,i,l),j=l,jdim-l),k=l,kdim-l),i=l,idim-l),l=l,5)

The above file format corresponds to output from the program CFL3D. The i, j, k

indices in the read statement are defined differently compared to the BL3D terminology.

Here, i refers to the span direction, and j refers to the chord wraparound direction that

starts from the wing lower surface trailing edge or the downstream plane of the lower

surface wake. Note that in this case the solution points are one less than the grid points

because they are obtained at the cell centers. Following these read statements, the

i, j indices are switched to correspond to BL3D notation and are normalized with the

reference length reflen. The coordinates and solution on the wing surface alone are

then extracted. In some cases, the sign of the coordinate y and velocity component vc

may have to be switched because in BL3D the coordinate system assumes a right wing.

The variable q contains the solution vector in standard CFL3D notation (see the README

file for more detailed information).

(b) A provision is included in the interface program to input the inviscid data on the

surface only from a single ASCII file in the following format:

open (uni
read (2 I,

read (2 i,

read(21,*) (

read(21,*) (

read(21,*) (

read(21,*) (

read(21,*) (

read(21,*) (

read(21,*) (

read(21,*) (

read(21,*) (

read(21,*) (

t=21, file='edge.
*)iv, jv

*) ((xc(i,j) ,i=l,

(yc(i j) ,i=l,

(zc(i j) ,i=l,

(uc(i j) i=l

(vc(i j) i=l

(wc(i j) i=l

(tc(i j) i=l

(pc(i j) i=l

(xs(i j) i=l
(ys(i j) i=l

(zs(i j) ,i=l

dat',status='unknown')

iv)

iv)

iv)

iv)
iv)

iv)

iv)

iv)

j=1 iv)
j=1 iv)
j=1 jr)
j=1 iv)
j=1 iv)
j=1 iv)
j=1 iv)
j=1 iv)

iv+l) ,j=l, jv+l)
iv+l) ,j=l, jv+l)

iv+l) ,j:l, iv+l)

The variables iv, jv refer to the surface grid cell center dimensions in the chord

wraparound direction and the span direction. The variables xc, yc, zc are coordinates

of the cell centers (assumed to be nondimensionalized with reflen) and uc, vc, wc are
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the Cartesian velocity components (normalized by free-stream velocity) from the inviscid

solution at the cell centers. The variables tc,pc are nondimensional temperature and

pressure coefficient values at the cell centers. The variables xs, ys, zs are the actual

normalized grid locations (not used in the program except for plot output).

The input file for the interface run is in the following format:

bl3d/interface/casel / inp. dat

CASE i, INTERFACE RUN
amach gam isur f is tar t
0.5 1.40 1 0
itel ite2 jtel jte2
33 289 1 43

jl j2 reflen
7 35 1.0

ncp xcp
40 0.05
itat uerlim omatt
50 0. 0002 0.8

nxw j lw j 2w iout
i00 7 35 1

Note that each input line is preceded by a line that contains a description of the

input variables (read as a character variable and ignored). The description of the input

variables is as follows:

amach

gam

isurf

istart

itel,ite2,jtel,jte2

jl,j2

reflen

Mach number

ratio of specific heats

upper or lower surface (i or 0)

restart option
=0 full run, input from

inviscid files 'grid', 'rest.bin'

=i run with data read from 'edge.dat'

=2 read inviscid files, write 'edge.dat'

and stop

indices corresponding to wing edges

itel,ite2: lower and upper surface TE
indices (inviscid data assumed to be
indexed in the chord-wrap-around dir-

ection from lower TE to LE to upper TE)

jtel,jte2; span direction wing boundaries

limit inviscid data processing to (jl->j2)

normalizing length, usually root chord;

if grid units are in inches for example,
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ncp,xcp

itat,uerlim, omatt

nxw, jlw, j2w

iout

reflen can be used to be consistent with
units

number of points in the BL grid between
attachment point and local chord fraction
=xcp (30,0.05 for example for 30 points
from attach, point to 5% chord location)

max number or attachment point relocation

iterations and error tolerance on ue

(20,0.001 recommended)
omatt is a relaxation factor for attach-

ment point relocation iteration,<l;
smaller values give slower convergence,

but less oscillation

BL3D output option

output file write will be from
i=l to i=nxw, j=jlw to j=j2w

nxw. LE.nx; jlw. GE.jl ; j2w. LE.j2
if nxw is set to 0, nxw taken to be=nx

=i, output interpolated ue,ve,te values

=2, output ue,ve,te from
solution of BL-EDGE equations

Note that the istart=l option corresponds to the input of inviscid data from a single

ASCII file as described previously. If the calculation is for the lower surface (isurf=0)

and if istart=0, then the program reverses the i indexing direction (in effect, the lower

surface becomes the upper surface of an inverted wing).

Interface Program Output

The output for the BL3D code is written to a binary file called bl.bin. The format

for this write is as follows (see also the file blout, f):

nyw=j 2w- j lw+l
write (i0 )nxw, nyw
write(10) ((x(i,j),i=l,nxw),j=jlw, j2w)

write(10) ((y(i,j),i=l,nxw) ,j=jlw, j2w)

write(10) ((hl(i,j),i=l,nxw),j=jlw, j2w)

write (I0) (
write (i0) (

if (iout. eq
write (i0) (

write (i0) (
else
write (i0) (

write (I0) (

(h2 (i, j ) ,i=l, nxw) ,j=j lw, j2w)

(g12 (i, j) ,i=l,nxw) ,j=j lw, j2w)

.i) then
(ue (i, j ) ,i=l, nxw) ,j=j lw, j2w)

(ve (i, j ) ,i=l, nxw) ,j=j lw, j2w)

(use (i, j) ,i=l, nxw) ,j =j lw, j2w)

(vse(i,j) ,i=l,nxw) ,j=jlw, j2w)
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endi f
write(lO) ((pb(i,j),i=l,nxw),j=jlw, j2w)
if (iout. eq. i) then
write(lO) ((tb(i,j),i=l,nxw),j=jlw, j2w)
else
write (i0)
endi f
write (I0 )
write (i0 )
write (i0)
write (I0)
write (i0)
write (i0)
write (i0)

((tse(i,j),i=l,nxw),j=jlw, j2w)

((xb(i,j),i=l,nxw),j=jlw, j2w)
( (yb (i, j ) , i=l, nxw) , j:jlw, j2w)
( (zb(i, j) , i=l, nxw) , j=jlw, j2w)
( (ub(i, j) , i=l, nxw) ,j=j lw, j2w)
( (vb(i, j) ,i=l, nxw) ,j=j lw, j2w)

((wb(i,j),i=l,nxw),j=jlw, j2w)

(xsave (nx, j ) ,j=jlw, j2w)

The output of xsave corresponds to the normalizing arc length values used in each

span station j=jlw, j2w. Note that the dimensional distance from the attachment line

in the x direction (i.e., surface arc length) is given by x (i, j ) *xsave (j) *reflen.

Other output files contain information about attachment-line iteration convergence, the

accuracy of the interpolation, and the BL-EDGE solution. The files README, main. f,

as well as comment statements throughout the various subroutines, may be consulted

for more information on these outputs.

Running the Interface Program

The program routines are contained in the following files:

main. f
attach.f
blout.f

inputs.f
metrix.f

pack. f

ploti.f
rinvis.f
sdist.f
solv3.f

sur f. f

In addition, the include files corn, compack, the makefile makefile, and the input

file into. dat are also provided. A brief description of some of these files follows:

inputs.f. Reads the inputfile inp.dat.
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rinvis, f. Reads the inviscid data; extracts required data needed for the upper or

lower surface; normalization of coordinates and flow quantities.

attach, f. Locates the initial attachment line (for first pass only); generates a

boundary-layer surface grid that originates from the currently defined attachment line;

calls sdist, f for a suitable grid stretching.

metrix, f. Calculates metric quantities hi, h2, g12 based on currently defined

boundary-layer grid.

surf. f. Solves the BL-EDGE equations if this input option is selected.

blout, f. Outputs the file bl.bin required for BL3D run.

pack. f. Library of cubic tension spline interpolation routines.

The include file corn has the following parameter statements (which correspond to

case 1 in this example):

parameter(jdim=321,kdim=49,idim=53)

parameter(ivm=257,jvm=43)

parameter(nxm=3OO,nym=jvm)

The dimensions depend on the inviscid grid size and the boundary-layer grid size;

see comment statements in the file corn for selection of these values.

The include file compack is used in conjunction with the spline routines in pack. f.

The program is run as follows: choose appropriate dimensions in the parameter

statements in the file corn; remove all. o files if corn is modified; then type make followed

by a. out to run the program. The output files fort. 3, fort. 20, fort. 30, fort. 31,

fort. 32, fort. 50, fort. 51, fort. 99 are useful for plotting or checking the results.

Please refer to the various subroutines for a description of these outputs.

An appropriate selection of input quantities and inviscid data of good resolution are

required for successful completion of the interface run. Run times on the Cray are only a
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few CPU seconds so that runs can usually be made interactively. Some error messages

and suggested fixes are given below.

error from s/r SDIST; ipass=...

no solution for ak found in the range ...

change ak or dak values in s/r ATTACH or

to
• • • ;

change input values of ncp,xcp ...'

The possible problem here is the use of inappropriate boundary-layer grid stretching;

try a different combination of ncp, xcp. The inviscid grid may also be too coarse near

the leading edge.

Convergence to uerlim not achieved

This problem is due to the lack of convergence in the attachment-line relocation

loop; choose a lower value of omatt or increase itat,uerlim values. If various

combinations do not work, inviscid data is too coarse 9_[the solution near the attachment

line is not smooth enough or the inviscid attachment line is too curved.

no convergence; s/r surf

i,j =...
ii,use(ii,j) ,vse(ii,j) ,hse(ii,j) ,pb(ii,j)

• • • • • • • • • •

This problem is due to lack of convergence in the BL-EDGE equations, which is

invariably caused by a small nonnegative coP/oqx at the attachment line. The nonnegative

OP/Ox is caused by an amplification in the oscillations in pressure near the attachment

line from the spline interpolation caused by a coarse inviscid grid. One possible fix is to

drop back to linear interpolation for P for a few points near the attachment line. Some

comment statements can be found in attach, f, which can be "uncommented" to drop

back to linear interpolation.
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Boundary-Layer Program Inputs

The inputs to the boundary-layer program are composed of two files:

(a) The boundary-layer edge data file bl. bin. This binary file is created by running

the interface program and is assumed to be available in the current directory (bl/casel,

for example). The format for this file has been described previously. This file is read

in the subroutine rinvis.

(b) The boundary-layer input options file inp. dat. This file is read in the subroutine

inputs and is assumed to be in the following format (note that each input line is

preceded by a line that contains a description of the input variables, which is read as

a character variable and ignored):

bl3d/bl/casel/inp.dat

CASE 1 : BL INPUTS
AMACH PFS TFS PRL IWALL
0.5 2000 520 0.72 0

ZMAX AK NXLIM NYLIM
8.0 1.05 68 29
ITMAX EPSF EPSG EPSH IORD

20 l.e-6 l.e-6 l.e-06 5

The description of the input variables is given below:

REFLEN I_IT
1.0 0

amach

pfs

tfs

prl

iwall

reflen

free-stream Mach number

free-stream static pressure (lb/ft2)

free-stream static temperature (deg R)

laminar Prandtl number

wall boundary condition
=0 adiabatic wall

=i wall temperature, deg R specified
(read in 'main. f')

=2 wall heat flux specified ,ib/(ft.sec)

(read in main.f)

note: suction rates are also specified in

reference length in ft.
(similar to input in interface program, but

'main.f'

in ft.)
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iunit

zmax

ak

nxlim

nylim

itmax

epsf

epsh

iord

US or SI units, =0 for US units

SI units not currently implemented

maximum value of transformed variable

corresponding to boundary-layer edge

stretching coefficient by which points are

distributed away from the wall

number of stations to march in x direction

number of span-wise stations in y direction

maximum number of iterations at each (i,j)

convergence criterion for f-prime at wall

convergence criterion for h-prime at wall

value of i for which scheme becomes fully

order in the stream-wise direction

'zeta'

point

second-

Boundary-Layer Program Outputs

The output from the boundary-layer program is output to several fort. files. The

convergence information can be found in fort. 2. Most of the results are output from

subroutine phys and can be modified as required. The output quantities include

z*, u, v, 7" profiles; boundary-layer thickness, displacement thickness, and skin-friction

coefficient; streamwise and crossflow profiles; and crossflow Reynolds number. Please

refer to subroutine phys for more details. Note that these "writes" are for each (i,

j) location (with j as the inner loop).

Output Format for Stability Analysis

The output of profiles and their derivatives to first and second order, as well as

edge-normalizing quantities, are made in the format described below.

open(unit=7,file='fort.7'

write(7)title

Title in character*80.

,form='unformatted',status='unknown')
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write(7)nxlim, nylim, reflen

nxlim is number of chordwise stations.

nylim is number of spanwise stations.

reflen is reference length, dimensional.

write (7) pfs, tfs, ufs, amach, rofs

Quantities P_o, T_o, U_o, Moo, p*.

For each profilei=l,nxlim; _=l:nylim:

write (7)i,j,nz,x(i,j),y(i,j) ,xbs,ybs,zbs
write (7)hl(i,j),h2(i,j),gl2(i,j) ,sls

write (7) ues,ves, tes, roes,pes, res, ales,prl, deltax, thetax, rcr

i is streamwise index.

j is spanwise index.

nz is no. of points in profile (constant).

x (i, j ) is boundary-layer coordinate x.

y (i, j ) is boundary-layer coordinate y.

xbs, ybs, zbs are Cartesian coordinates x'*, 2'*, z'*.

hl (i, j ) ,h2 (i, j ) ,g12 (i, j ) are metricshl,h2,g12.

sls is s_*, dimensional arc-length in the x direction.

ues, ves, tes, roes, pes are edge quantities u,, ve, Te, p,, P,.

For i=l, Ou,/Os, is output instead of u, .

res is local Reynolds number based on s_, u,, Ue •

ales is reference length by which normal distance is scaled.

ales = l* = ,_ for i=l.
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ales = 1" = _/yesl/u_ for i>l.

prl is laminar Prandtl number.

deltax is boundary-layer thickness (99 percent) based on u, dimensional.

thetax is momentum thickness based on u, dimensional.

rcr is radius of curvature, dimensional.

Profile outputs:

write(7) (zp(k),k=l,nz)

zp is zp = (z*/l*); note 1" definition for i=l and i>l.

This box only for i>1:

write(7) (up(k),k=l,nz)

write (7) (upz (k) ,k=l,nz)

write (7) (upzz (k) ,k=l, nz)

up is u*/.,*; upz is O%/Ozp; upzz is 02up/Oz 2

write(7) (vp(k),k=l,nz)

write(7) (vpz(k),k=l,nz)

write(7) (vpzz(k),k=l,nz)

Vp is 1}*lYe* if i=l, V*/Ue* if i>l;

_z,vpzz are derivatives defined similar to upz, upzz.

write(7) (tp(k),k:l,nz)

write(7) (tpz (k),k=l,nz)

write(7) (tpzz (k),k=l,nz)

tp is T*/Te*; tpz, tpzz are defined similar to upz, upzz.
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write(7) (wp(k),k=l,nz)

write(7) (wpz(k),k=l,nz)

write(7) (wpzz(k) ,k=l,nz)

wp is _*/v* if i=l, _*/u 2 for i>l; wpz, wpzz are defined similar to upz, upzz.

This box only for i>2; output of streamwise derivatives:

write(7) (duds(k) ,k=l,nz)
write (7) (dvds (k) ,k=l, nz)

write(7) (dtds(k),k=l,nz)
write (7) (dwds (k) ,k=l, nz)

duds=(a.*la, )l(U lt*)

/l*)

dtds=( OT* / cgS*l) / ( U_o/ l* )

These output writes are implemented in subroutine out in the subdirectory,

bl3d/bl/casel (and also bl3d/bl/case2).

Running the Boundary-Layer Program

The program routines are contained in the following files:

blk. f
der. f
etac. f
main. f

phys. f
rinvis, f
sumk. f

cl3phi, f
derk. f
initial, f

nextep, f
read7, f
solve, f

updte, f
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conv. f

edge. f
inputs, f
out. f
ref. f
sum. f

In addition, the include files com and compack, the makefile makefile, and the

input file inp. dat are also provided. A brief description of important subroutines follows:

inputs, f. Reads input file inp.dat.

ref. f. Calculates reference quantities.

rinvis, f. Reads boundary-layer edge data bl.bin.

initial, f. Sets up initial profile at the attachment point i = l, j = ].

main. f. Calls various routines; specification of wall temperature or wall heat flux;

specifies wall suction rate.

edge. f. Specifies edge coefficients depending on boundary point or interior point;

calls cl3phi, f, etac. f to calculate some additional edge parameters.

etac. f. Sets up the y differencing coefficients based on the local crossflow direction

(L scheme or Z scheme).

blk. f. Sets up and solves the (7x7xnz) block tridiagonal system.

updte, f. Updates nonlinear quantities 0, 0', I, f, Ds, and l at k = ! for the current

iteration.

updte, f. Checks convergence.

phys. f. Outputs dimensional quantities, boundary-layer properties; calculates

crossflow.

nexstep, f: storing of variables prior to stepping in i.

out. f: output of quantities and profiles for boundary-layer stability analysis.

The include file corn has the following parameter statement (for casel in this

example):
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par ame ter ( nx= 10 0, ny=2 9, nz = 61 )

The nx and ny values are as written out from the interface program. The value of

nz corresponds to the number of points in the boundary-layer normal direction.

The program is run with input files inp. dat and bl. bin. Appropriate dimensions

in parameter statement in the file corn are selected; then remove all . o files if com

was modified. Type make, followed by a. out to run the program. Runs can be made

interactively for moderate grids. The program execution stops at the (L ]) location where

the boundary layer separates; this results from the calculation of negative temperature

in subroutine update. An error message is printed out, and the incipient separation

condition can be checked by the local skin-friction coefficient.
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Computer variable

Table 1

List of Important Program Variables

Symbol Description

adl, ad2, ad3

ak

al

alp

alpr

alprp

amach

amu e

amuel

amufs

amur

bl,b2,b3,b4,b5,b6

b3h,b4h

a_m, _k k, l,m, _l,m

A1, A2, ,43, A4

al, a2, a3

k_

l

f

I/Pr

l'/Pr

Mc¢

#e

_e at (i,j)

/lr

B1, B2, B3, B4,

Bs, B6

B3: B4

elements of linearized system (eq. (120))

coefficients of transformed continuity

equations (eqs. (47)-(50))

,_ direction coefficients (eq. (129))

stretching constant for ( distribution (eq.

(128))

ratio (Pl_)/(P_#_)

o /o¢

Mach number

edge viscosity, nondimensional, (eq. (33))

local value of #_

free-stream viscosity, dimensional

reference viscosity function,
nondimensional (eq. (33))

coefficients (eqs. (55)-(60))

coefficients (eq. (94))
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Computer variable Symbol Description

b3t,b4t,b5t,b6t

bdl,bd2,bd3,bd4,

bd5

bet

bet2

ci,c2,c3,c4,c5,c6

c4h,c5h

c3t, c4t, c5t, c6t

c13

c132

cl3phix

cl3phiy

c24,c25,c26

c26x

c34,c35,c36

cbetal

cdl,cd2

chil,chi2,chi3

9'/(7-1)

(;- 1)/2

C1, C2, C3, C4,

Cs, C6

04,0 

04,

Cl3

0132

(C13¢/hl),x

{ C13¢Yr / ( ]12tte) },y

C24, C2s, C26

£9C26/c9x

C34, C35, C36

_os (5),,j

l 1
2_ 12

XI_ X2, X3

coefficients (eq. (91))

7t direction differencing coefficients (eq.

(132))

coefficients (eqs. (62)-(67))

coefficients (eq. (95))

coefficients (eq. (92))

metric coefficient (eq. (6))

metric coefficient (eq. (48))

metric coefficient (eq. (50))

coefficients (eq. (19))

coefficient (eq. (80))

coefficients (eq. (20))

angle between grid lines (eq. (3))

constants (eq. (101))

coefficients (eq. (87))
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Computer variable Symbol Description

dl,d2,d3,d4,d5

d5p

d3 t, d4 t

del fp, delgp,

delhp

delfpmax,

delgpmax,

delhpmax,

deltax

duds

el, e2, e3, e4

eps f, epsg, epsh

fl, f2

fe

fel

fey

fp

fpl, fp2

Dl, D2, D3, D4,

D5

ODs/O(

D3,D4

aSS, aS6, OS¢

max. of

0S5, aS6,0S7

F

(OuJOx)i=l

coefficients (eqs. (68)-(69))

coefficients (eq. (96))

solution vector elements (eq. (108))

convergence indicators

boundary-layer thickness based on F

reaching 99 percent value, dimensional

attachment-line velocity gradient

coefficients (eq. (87))

convergence criterion for change in

f',g', h' at wall (k = 1)

U/?Ae

F at i - 1 and i - 2

attachment-line velocity gradient

local value of fe

used in eq. (76)

a(_,l,_o)la(

ati-landi-2

B-18



Computer variable Symbol Description

g

fl, f2

G

gl, g2

gl2,gl21 812

gl2x Og12/_gx

gl2y 09912/ogy

gam 7

gel

gex,gey

gP

gpl, gp2

h

hl

hll

hlx,hly

h2

h21

h2x,h2y

he

G I

H

hl

ha

hi,z, hl,y

h2

h2

h2,x, h2,y

Hk=ke

v/vr

F at i - 1 and i - 2

Gati- 1 and/- 2

metric coefficient

local value of Gk=ke

x,y gradients of Gk=k_

8(v lvr ) /cg¢

G rat/-land/-2

nondimensional total enthalpy (eq. (24))

metric coefficient

local value of metric coefficient

x,y gradients of hi

metric coefficient

local value of metric coefficient

x,y gradients of h2

boundary-layer edge value of H
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Computer variable Symbol Description

hel

hfs H i

hhl,hh2

hp H'

hpl, hp2

hse

i i

iat

idim

ile

iord

iout

istart

isurf

it

itat

itel,ite2

superscript n

local value of H

free-stream value of total enthalpy (eq.

(23))

Hati- landi-2

aHla 

H'ati- ]andi-2

He from BL-EDGE equations

streamwise index

attachment-line iteration count

Euler grid maximum dimension

i index of leading edge

value of i at which scheme is fully second
order in x

flag to output edge values by interpolation
or from BL-EDGE solution

flag for interface run mode

flag for upper or lower surface

boundary-layer iteration count

maximum number of attachment-line

iterations

wing trailing edge indices
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Computer variable Symbol Description

itmax

iunit

iv

ivm

iwall

J

jl,j2,j3,j4,j5

j lw, j2w

jdim

j tel, j te2

jv

jvm

kdim

i flagx

iflagy

maximum number of boundary-layer
iterations

flag for U.S. units or S.I. units

number of points in streamwise direction,
from interface run

maximum dimension for iv

flag for wall boundary condition

spanwise index

neighboring points of (i, j ) used in y

differencing

spanwise indices that correspond to

interface output

Euler grid maximum dimension

wing symmetry plane and tip indices

number of points in spanwise direction
from interface run

maximum dimension for jv

Euler grid maximum dimension

flag to signify attachment-point solution or
three-dimensional solution

flag to signify LISW or general
three-dimensional case
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Computer variable Symbol Description

ncp

nx

nxlim

nxm

nxw

ny

nylim

nym

nz

nzl

omatt

omega

pb G

pc Cp

pfs

phil

number of points in boundary-layer grid
between attachment point and point at

which local chord fraction = ×cp

streamwise dimension of boundary-layer
grid

value of i<nx limiting march in x

maximum dimension for nx

number of streamwise stations written out
from interface code

spanwise dimension of boundary-layer grid

value of j (<ny) limiting sweep in ),

maximum dimension for ny

number of points in normal direction

nz-I

relaxation factor _,, for attachment-line
iteration

blending factor between LISW and
three-dimensional solutions

pressure coefficient on boundary-layer grid

pressure coefficient on Euler grid

free-stream static pressure, dimensional

local value of _,
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Computer variable Symbol Description

pi

prl Pr

q

qel

reflen

refls

refs

roe

roel

rofs

rstar

sll

tb

tC

re,tel

tfs

q

Re

Re

R*

$1

laminar Prandtl number

absolute velocity, nondimensional

local value of absolute edge velocity

reference length

free-stream Reynolds number based on

L_o (eq. (29))

free-stream Reynolds number per unit

length

boundary-layer edge density,
nondimensional

local value of boundary-layer edge density

free-stream density, dimensional

gas constant

nondimensional arc length

nondimensional boundary-layer edge

temperature

nondimensional temperature from Euler
solution

nondimensional boundary-layer edge

tempe ratu re

free-stream dimensional temperature
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Computer variable Symbol Description

thel, the2 O, O'

thetax

til,ti2

tr Tr

temperature ratio and gradient (eqs. (54)
and (89))

momentum thickness based on F,
dimensional

temperature profiles at i - 1 and i - 2

reference temperature (eq. (33))

trs _*

tse

tst

tw TW

ub

uc

ue He

uel Ue

uerlim

uex

uey

reference temperature, dimensional (eq.

(32))

edge temperature from the solution of the
BL-EDGE equations

streamwise derivative of T

wall temperature, nondimensional (eq.

(119))

Cartesian velocity component,
nondimensional

Cartesian velocity component from Euler
solution, nondimensional

streamwise edge velocity

local value of streamwise edge velocity

error tolerance on streamwise velocity .e
at attachment line

streamwise velocity gradient

spanwise velocity gradient
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Computer variable Symbol Description

ufs U_o

uil,ui2

url

use

ustr

vb

vc

vcross

ve Ve

vel Ve

vil,vi2

vrl

vrx, vry

vse

Vr

w w

freestream velocity, dimensional

velocity profiles at i - 1 and i - 2

= 0 on attachment line, = 1, away from

attachment line; used to compute q

edge velocity from the solution of the
BL-EDGE equations

velocity profile in the edge streamline
direction

Cartesian velocity component,
nondimensional

Cartesian velocity component from Euler
solution, nondimensional

crossflow velocity (orthogonal to edge

streamline)

edge velocity in span direction,
nondimensional

local value of Ve

velocity profiles at i - 1 and i - 2

reference velocity used in the definition of

G (eq. (43))

derivatives in x,y of vr

edge velocity from the solution of the
BL-EDGE equations

transformed normal velocity (eq. (44))
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Computer variable Symbol Description

wb

wc

wil,wi2

x, y x,y

xb, yb, zb x'

xc,yc,zc

xcp

xnorm

z

zcon

zil,zi2

zphys

zphysx

zphysy

Z

Cartesian velocity component,
nondimensional

Cartesian velocity component from Euler

solution, nondimensional

velocity profiles at i - ] and i - 2

streamwise boundary-layer coordinates

Cartesian coordinate of boundary-layer

grid

Cartesian coordinate of Euler grid

percent chord value at which ±=ncp

normalizing arc length, nondimensional

transformed boundary-layer normal
coordinate

coefficient to calculate zphys from z

zphys ati- l and i- 2

boundary-layer grid normal coordinate,
dimensional

streamwise gradient of z

spanwise gradient of z
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